Social Polarization: A Network Approach

27th International Conference on Game Theory

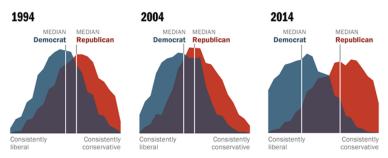
Marcos Fernandes & Marina Azzimonti

July 21, 2016

Polarization growing in the last 2 decades

Democrats and Republicans More Ideologically Divided than in the Past

Distribution of Democrats and Republicans on a 10-item scale of political values



Source: 2014 Political Polarization in the American Public

Notes: Ideological consistency based on a scale of 10 political values questions (see Appendix A). The blue area in this chart represents the ideological distribution of Democrats; the red area of Republicans. The overlap of these two distributions is shaded purple. Republicans include Republican-leaning independents: Democrats include Democratic-leaning independents (see Appendix B).

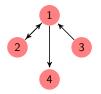
PEW RESEARCH CENTER

This paper

- Objective: understand what are the main drivers of Polarization dynamics
- Key Ingredients:
 - Individuals are connected through a Network and exchange information
 - Receive private signals (Bayesian) but also incorporate friends' opinions (non-bayesian)
 - Presence of "fanatics" prevents Society to learn the truth and might create cycles of polarization
- Innovation: simulate large number of random networks to decompose the importance of their characteristics in driving polarization (homophily, density, clustering, etc)

Basic Structure: Social Network

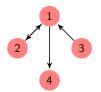
- Finite and fixed set of agents $N = \{1, 2, \dots, n\}$
- Connectivity among these agents at every time t is described by a directed graph $\mathbf{G}^t = (N, \mathbf{g}^t)$



$$\mathbf{g}^t = \left(egin{array}{cccc} 1 & 1 & 0 & 1 \ 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

Basic Structure: Social Network

- Finite and fixed set of agents $N = \{1, 2, \dots, n\}$
- Connectivity among these agents at every time t is described by a directed graph $\mathbf{G}^t = (N, \mathbf{g}^t)$



$$ilde{\mathbf{g}}^t = \left(egin{array}{cccc} rac{1}{3} & rac{1}{3} & 0 & rac{1}{3} \ rac{1}{2} & rac{1}{2} & 0 & 0 \ rac{1}{2} & 0 & rac{1}{2} & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

Basic Structure: Network Motion

- Sequence of time, t = 1, ..., T
- For all $t \ge 1$, we associate a *clock* to every directed link of the form (i,j) in the initial adjacency matrix \mathbf{g}^0
- Ticking: i.i.d. samples from a Bernoulli with fixed and common parameter $p \in [0,1]$

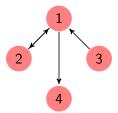
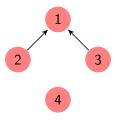


Figure: **g**⁰

Basic Structure: Network Motion

- Sequence of time, t = 1, ..., T
- For all $t \ge 1$, we associate a *clock* to every directed link of the form (i,j) in the initial adjacency matrix \mathbf{g}^0
- Ticking: i.i.d. samples from a Bernoulli with fixed and common parameter $p \in [0, 1]$



Basic Structure: Network Motion

- ullet Draws: n imes n matrix $oldsymbol{\mathbf{c}}^t$, with regular elements $c^t_{ij} \in \{0,1\}$ and $c^t_{ii} = 1$
- Graph Law of Motion: $\mathbf{g}^t = \mathbf{g}^0 \circ \mathbf{c}^t$

• Initial prior over a parameter space $\Theta = [0,1]$: $\xi_i(\theta)$ (world-view)

• Initial prior over a parameter space $\Theta = [0,1]$: $\xi_i(\theta)$ (world-view)

•
$$\theta_{i,t} \sim \mathcal{B}e\left(\alpha_{i,t}, \beta_{i,t}\right)$$

- Initial prior over a parameter space $\Theta = [0,1]$: $\xi_i(\theta)$ (world-view)
- $\theta_{i,t} \sim \mathcal{B}e\left(\alpha_{i,t}, \beta_{i,t}\right)$
- Signal profile $\mathbf{s}_t = (s_{1,t}, s_{2,t}, \dots, s_{n,t})$ form an i.i.d. random sample from a *Bernoulli distribution* with parameter θ^*

- Initial prior over a parameter space $\Theta = [0,1]$: $\xi_i(\theta)$ (world-view)
- $\theta_{i,t} \sim \mathcal{B}e(\alpha_{i,t}, \beta_{i,t})$
- Signal profile $\mathbf{s}_t = (s_{1,t}, s_{2,t}, \dots, s_{n,t})$ form an i.i.d. random sample from a *Bernoulli distribution* with parameter θ^*
- Each agent has a real-valued *Utility function*: $U(\theta, y_{i,t}) = -(\theta y_{i,t})^2$

- Initial prior over a parameter space $\Theta = [0,1]$: $\xi_i(\theta)$ (world-view)
- $\theta_{i,t} \sim \mathcal{B}e(\alpha_{i,t}, \beta_{i,t})$
- Signal profile $\mathbf{s}_t = (s_{1,t}, s_{2,t}, \dots, s_{n,t})$ form an i.i.d. random sample from a *Bernoulli distribution* with parameter θ^*
- Each agent has a real-valued *Utility function*: $U(\theta,y_{i,t})=-(\theta-y_{i,t})^2$
- ullet θ could be interpreted as

- Initial prior over a parameter space $\Theta = [0,1]$: $\xi_i(\theta)$ (world-view)
- $\theta_{i,t} \sim \mathcal{B}e(\alpha_{i,t}, \beta_{i,t})$
- Signal profile $\mathbf{s}_t = (s_{1,t}, s_{2,t}, \dots, s_{n,t})$ form an i.i.d. random sample from a *Bernoulli distribution* with parameter θ^*
- Each agent has a real-valued *Utility function*: $U(\theta,y_{i,t})=-(\theta-y_{i,t})^2$
- ullet heta could be interpreted as
 - 1 the optimal size of the government as % of the GDP,

- Initial prior over a parameter space $\Theta = [0,1]$: $\xi_i(\theta)$ (world-view)
- $\theta_{i,t} \sim \mathcal{B}e(\alpha_{i,t}, \beta_{i,t})$
- Signal profile $\mathbf{s}_t = (s_{1,t}, s_{2,t}, \dots, s_{n,t})$ form an i.i.d. random sample from a *Bernoulli distribution* with parameter θ^*
- Each agent has a real-valued *Utility function*: $U(\theta, y_{i,t}) = -(\theta y_{i,t})^2$
- ullet heta could be interpreted as
 - 1 the optimal size of the government as % of the GDP,
 - 2 the unemployment rate in the next year

• For each opinion $y_{i,t}$ and signal $s_{i,t}$, agent's expected utility is:

$$\mathbb{E}[U(\theta, y_{i,t})] = \int_{\Theta} U(\theta, y_{i,t}) \xi_{i,t}(\theta | s_{i,t}) d\theta$$

• For each opinion $y_{i,t}$ and signal $s_{i,t}$, agent's expected utility is:

$$\mathbb{E}[U(\theta, y_{i,t})] = \int_{\Theta} U(\theta, y_{i,t}) \xi_{i,t}(\theta | s_{i,t}) d\theta$$

• Let $y_{i,t}^* \in \mathbb{R}$ be a value such that $\mathbb{E}[U(\theta, y_{i,t})]$ is maximized:

$$\begin{aligned} y_{i,t}^* &= \argmax_{\{y_{i,t}\}} \mathbb{E}_{\theta|s_{i,t}}[U(\theta,y_{i,t})] \\ &= \mathbb{E}[\theta|s_{i,t}] = \frac{\alpha_{i,t}}{\alpha_{i,t} + \beta_{i,t}} \end{aligned}$$

• For each opinion $y_{i,t}$ and signal $s_{i,t}$, agent's expected utility is:

$$\mathbb{E}[U(\theta, y_{i,t})] = \int_{\Theta} U(\theta, y_{i,t}) \xi_{i,t}(\theta|s_{i,t}) d\theta$$

• Let $y_{i,t}^* \in \mathbb{R}$ be a value such that $\mathbb{E}[U(\theta, y_{i,t})]$ is maximized:

$$\begin{aligned} y_{i,t}^* &= \argmax_{\{y_{i,t}\}} \mathbb{E}_{\theta \mid s_{i,t}}[U(\theta, y_{i,t})] \\ &= \mathbb{E}[\theta \mid s_{i,t}] = \frac{\alpha_{i,t}}{\alpha_{i,t} + \beta_{i,t}} \end{aligned}$$

• Therefore, $y_{i,t}^*$ is the *opinion* of agent i given his/her *world-view* and *signals*

• For each opinion $y_{i,t}$ and signal $s_{i,t}$, agent's expected utility is:

$$\mathbb{E}[U(\theta, y_{i,t})] = \int_{\Theta} U(\theta, y_{i,t}) \xi_{i,t}(\theta|s_{i,t}) d\theta$$

• Let $y_{i,t}^* \in \mathbb{R}$ be a value such that $\mathbb{E}[U(\theta, y_{i,t})]$ is maximized:

$$\begin{aligned} y_{i,t}^* &= \argmax_{\{y_{i,t}\}} \mathbb{E}_{\theta \mid s_{i,t}}[U(\theta, y_{i,t})] \\ &= \mathbb{E}[\theta \mid s_{i,t}] = \frac{\alpha_{i,t}}{\alpha_{i,t} + \beta_{i,t}} \end{aligned}$$

- Therefore, $y_{i,t}^*$ is the *opinion* of agent i given his/her *world-view* and *signals*
- The distribution of opinions is denoted by the mass function f(y)

Example: Worldviews and Opinions

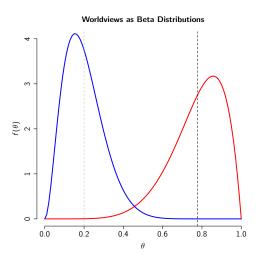


Figure: Agent Blue: $\alpha=3, \beta=12$; Agent Red: $\alpha=7, \beta=2$

Basic Structure: Timeline of Events

- t = 0
 - Network \mathbf{g}^0 is randomly formed (explain later)
 - Nature draw parameters vectors (α_0, β_0)
 - Initial Opinions vector y_0 is formed
- t > 0
 - Morning: Agents receive signals, Update (Bayesian)
 - Afternoon: Meet Friends, Update (Non-Bayesian)
 - Night: Revise opinion
- Agents are partially Bayesians: they are influenced by people in their network (DeGrootian)
- Parameter λ measure how Bayesian a Society is

Basic Structure: Belief Update

- Departure from:
 - Epstein, Noor and Sandroni (2010)
 - Jadbabaie, Molavi, Sandroni and Tahbaz-Salehi (2012)
- Update Rule

$$\alpha_{t+1} = \left[\lambda \mathbb{I} + (\mathbb{I} - \lambda)\tilde{\mathbf{g}}^{t+1}\right] \left(\alpha_t + \mathbf{s}_{t+1}\right)$$

$$\beta_{t+1} = \left[\lambda \mathbb{I} + (\mathbb{I} - \lambda)\tilde{\mathbf{g}}^{t+1}\right] (\beta_t + \mathbf{1} - \mathbf{s}_{t+1})$$

- Special cases:
 - Bayes: $\lambda = 1$
 - DeGroot: $\lambda = 0$

Definition 1 (Fanatic Agents)

Fanatic Agents are characterized by disregarding information both from private signals and friends

- Parameters:
 - Type 0: $\alpha = 0$ and $\beta = \beta^{max}$
 - Type 1: $\beta = 0$ and $\alpha = \alpha^{max}$

Definition 2 (Opinion Consensus)

A group $C \subseteq N = \{1, 2, ..., n\}$ reaches a consensus for any initial distribution of parameters (α_0, β_0) if

$$|\underset{t\to\infty}{\mathsf{plim}}\,y_{i,t} - \underset{t\to\infty}{\mathsf{plim}}\,y_{j,t}| < \epsilon$$

Definition 3 (Information Aggregation)

Information Aggregation is a measure of how close agents' opinions are to the true state of nature θ^* .

We say that society aggregates information if

$$\max_{i} | \min_{t \to \infty} y_{i,t} - \theta^* | < \epsilon$$

Following: Esteban and Ray (1994, 2004)

Definition 4 (Social Polarization)

Social Polarization P is a measure that aggregates both **Identification** and **Alienation** across citizens:

$$P_t^a(f) = \frac{1}{2} \sum_{i} \sum_{j \neq i} f(y_{i,t})^{1+a} f(y_{j,t}) |\tilde{y}_{i,t} - \tilde{y}_{j,t}|$$

where $a \in [0.25, 1]$ and $\tilde{y}_{i,t}$ is the opinion of agent i normalized by the average of society's opinion, denoted by $\tilde{y}_{i,t} = \frac{y_{i,t}}{\frac{1}{n}\sum_{i \in N} y_{i,t}}$, for all $i \in G$

Part 1: Asymptotic Analysis

Lemma 1

Social Polarization converges in probability to zero if agents reach Consensus.

Part 1: Asymptotic Analysis

Proposition 1

Information Aggregation implies lack of Social Polarization. The converse is not necessarily true.

Part 1: Asymptotic Analysis

Proposition 2

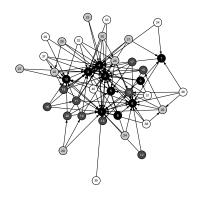
If the Social Network $G^0=(N,g^0)$ is strongly connected and aperiodic, then even when the edges are not activated every period and using this particular rule on Non-Bayesian Learning, Social Polarization still converges to zero as $t\to\infty$.

Part 2: Simulation-based exercise

- Limiting properties of Polarization are hard to ascertain analytically, then Simulation is a good tool for examining the importance of each characteristic.
- Simulate a large number of networks with different characteristics (clock, bayesian, proportion of fanatics, centrality of fanatics, etc...) and analyze their effects on:
 - Degree of Polarization (Average, Maximum)
 - Speed of Convergence
 - Oynamics (Cycles)
- Regression and Decomposition: $Y = g(X\beta) + \epsilon$

Part 2: Simulation-based exercise

Two particular examples



Out Dist = (0.01, 0.04, 0.10, 0.25, 0.60)

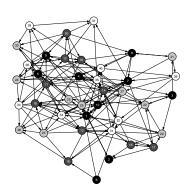
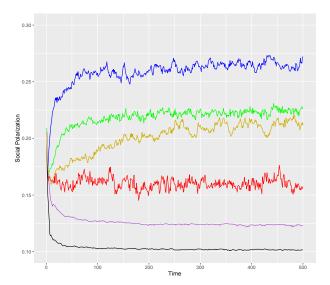


Figure: Erdos-Renyi n = 40, p = 10%

Polarization: Different Levels and Cycles



Initial Decomposition

	Average Polarization OLS
Proportion of F0	0.6336***
Average In-Degree F0	0.0011**
Proportion of F0 x Average In-Degree F0	0.0016^*
Clock	0.0062
Bayes	-0.0155**
Homophily	-0.0282
Clustering	-0.1252^{***}
Diameter	0.0025***
Initial Polarization	1.4920***
Initial Polarization (squared)	-1.9425^{***}
Constant	-0.1287^{***}

Note:

 $^*p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

Next Steps

- Run more simulations (tighten standard errors)
- Barabasi-Albert (Preferential attachment)
- Olock: other stochastic process (more or less persistence)
- Splitting economies with cycles from those that do not exhibit them for regressions
- Comparative statics (only move one parameter)
- Key-player analysis: How to reduce Polarization
- Related paper: Cheap-Talk