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Social Polarization: A Network Approach Motivation

Polarization growing in the last 2 decades

Democrats and Republicans More Ideologically Divided than in the Past

Distribution of Democrats and Republicans on a 10-ifem scale of political values
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This paper

@ Objective: understand what are the main drivers of Polarization
dynamics
o Key Ingredients:
o Individuals are connected through a Network and exchange information

o Receive private signals (Bayesian) but also incorporate friends’ opinions
(non-bayesian)

e Presence of "fanatics” prevents Society to learn the truth and might
create cycles of polarization

@ Innovation: simulate large number of random networks to
decompose the importance of their characteristics in driving
polarization (homophily, density, clustering, etc)

Summer 2016 (27th GT Conference) Marcos Fernandes and Marina Azzimonti July 21, 2016



Social Polarization: A Network Approach Baseline Model

Basic Structure: Social Network

o Finite and fixed set of agents N = {1,2,...,n}

@ Connectivity among these agents at every time t is described by a
directed graph G' = (N, gt)
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Social Network

@ Finite and fixed set of agents N = {1,2,...,n}

o Connectivity among these agents at every time t is described by a
directed graph G = (N, g*)

1
PN
) 3
4
1 1 1
1 1 5 1
i1 N
- 1 T oo
g =11 1
2 030
0 0 0 1

Summer 2016 (27th GT Conference) Marcos Fernandes and Marina Azzimonti July 21, 2016



Social Polarization: A Network Approach Baseline Model

Basic Structure: Network Motion

@ Sequence of time, t=1,..., T

@ For all t > 1, we associate a clock to every directed link of the form
(i,j) in the initial adjacency matrix g®

o Ticking: i.i.d. samples from a Bernoulli with fixed and common
parameter p € [0,1]
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Network Motion

@ Sequence of time, t=1,..., T

@ For all t > 1, we associate a clock to every directed link of the form
(i,j) in the initial adjacency matrix g®

o Ticking: i.i.d. samples from a Bernoulli with fixed and common
parameter p € [0,1]
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Network Motion

o Draws: nx n matrix c’, with regular elements c/; € {0,1} and ¢} =1

o Graph Law of Motion: gf =g%oct
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Priors and Utility Function

o Initial prior over a parameter space © = [0, 1]: £;(0) (world-view)
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Priors and Utility Function

o Initial prior over a parameter space © = [0, 1]: £;(0) (world-view)

e 0~ Be (ai,t’ﬁi,t>
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Priors and Utility Function

o Initial prior over a parameter space © = [0, 1]: £;(0) (world-view)
® 0;+~ Be (Oéi,t,ﬂi,t)

@ Signal profile s; = (517t,52,t, e ,s,,,t) form an i.i.d. random sample
from a Bernoulli distribution with parameter 6*
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Priors and Utility Function

o Initial prior over a parameter space © = [0, 1]: £;(0) (world-view)
® 0;+~ Be (Oéi,t,ﬂi,t)

@ Signal profile s; = (517t,52,t, e ,s,,,t) form an i.i.d. random sample
from a Bernoulli distribution with parameter 6*

e Each agent has a real-valued Utility function: U(0,y; ;) = —(6 — yi +)?
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Priors and Utility Function

Initial prior over a parameter space © = [0, 1]: &;(0) (world-view)

i+ ~ Be (Oéi,t, 5i,t>

Signal profile s; = (517t,52,t, . ,s,,,t) form an i.i.d. random sample
from a Bernoulli distribution with parameter 6*

Each agent has a real-valued Utility function: U(6,y; ) = —(0 — yi+)?

@ 0 could be interpreted as
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Priors and Utility Function

Initial prior over a parameter space © = [0, 1]: &;(0) (world-view)

i+ ~ Be (Oéi,t, 5i,t>

Signal profile s; = (517t,52,t, . ,s,,,t) form an i.i.d. random sample
from a Bernoulli distribution with parameter 6*

Each agent has a real-valued Utility function: U(6,y; ) = —(0 — yi+)?

@ 0 could be interpreted as
@ the optimal size of the government as % of the GDP,
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Priors and Utility Function

Initial prior over a parameter space © = [0, 1]: &;(0) (world-view)

i+ ~ Be (Oéi,t, 5i,t>

Signal profile s; = (517t,52,t, . ,s,,,t) form an i.i.d. random sample
from a Bernoulli distribution with parameter 6*

Each agent has a real-valued Utility function: U(6,y; ) = —(0 — yi+)?

@ 0 could be interpreted as
@ the optimal size of the government as % of the GDP,

@ the unemployment rate in the next year
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Utility Maximization Problem

@ For each opinion y; ; and signal s; ;, agent’s expected utility is:

E[U(0, yi.0)] = /e U6, yi.e)r.e(0]s:.)dO
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Utility Maximization Problem

@ For each opinion y; ; and signal s; ;, agent’s expected utility is:

BLUO.y:)) = [ U(0.3,.(015)00
o Let y/, € R be a value such that E[U(0, yi¢)] is maximized:

y;ft = arg max ]E0|s,-,t[U(9’y,',t)]
}’i,t}
Qjt
frd ]:E 0 CH [
[0]si¢] ot B
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Utility Maximization Problem

@ For each opinion y; ; and signal s; ;, agent’s expected utility is:

BLUO.y:)) = [ U(0.3,.(015)00
o Let y/, € R be a value such that E[U(0, yi¢)] is maximized:

yie = argmaxEgg [U(6, yi )]
}’i,t}
Qjt
frd ]:E 0 CH [
[0]si,] ot B

o Therefore, y/, is the opinion of agent i given his/her world-view and
signals
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Utility Maximization Problem

@ For each opinion y; ; and signal s; ;, agent’s expected utility is:

BLUO.y:)) = [ U(0.3,.(015)00
o Let y/, € R be a value such that E[U(0, yi¢)] is maximized:

yie = argmaxEgg [U(6, yi )]
}’i,t}
Q¢
=E[f|s; ;] = ———
[0]si,¢] ot B
o Therefore, y/, is the opinion of agent i given his/her world-view and
signals

@ The distribution of opinions is denoted by the mass function f(y)
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Social Polarization: A Network Approach Baseline Model

Example: Worldviews and Opinions

Worldviews as Beta Distributions

f(0)
2

Figure: Agent Blue: a =3,8=12; Agent Red: a=7,5=2
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Timeline of Events

et=0
o Network g° is randomly formed (explain later)
o Nature draw parameters vectors (g, o)
o Initial Opinions vector yy is formed

e t>0

o Morning: Agents receive signals, Update (Bayesian)
o Afternoon: Meet Friends, Update (Non-Bayesian)
o Night: Revise opinion

@ Agents are partially Bayesians: they are influenced by people in their
network (DeGrootian)

@ Parameter A\ measure how Bayesian a Society is
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Basic Structure: Belief Update

@ Departure from:

o Epstein, Noor and Sandroni (2010)
e Jadbabaie, Molavi, Sandroni and Tahbaz-Salehi (2012)

o Update Rule

Qrp1 = [AH (I A)g”l} (at n st+1>

Berr = [MI+ (I — N)ET] (B + 1 —s¢11)

@ Special cases:
o Bayes: A =1
e DeGroot: A =0
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Social Polarization: A Network Approach Definitions

Definition 1 (Fanatic Agents)
Fanatic Agents are characterized by disregarding information both from
private signals and friends

o Parameters:

e Type 0: =0 and g = M
o Typel: f=0and o = ™
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Social Polarization: A Network Approach Definitions

Definition 2 (Opinion Consensus)

A group C C N ={1,2,...,n} reaches a consensus for any initial
distribution of parameters (ayp, 5o) if

| plimy; s — plimyj | <e
t—00 t—00
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Social Polarization: A Network Approach Definitions

Definition 3 (Information Aggregation)
Information Aggregation is a measure of how close agents’ opinions are to
the true state of nature 6*.

We say that society aggregates information if

max | plimy; — 0% < e
! t—o00 )
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Social Polarization: A Network Approach Definitions

Following: Esteban and Ray (1994, 2004)

Definition 4 (Social Polarization)

Social Polarization P is a measure that aggregates both ldentification
and Alienation across citizens:

a 1 a % %
fl=3 SO Fyie) T F(yie) 1Fie — Fiel

iy

where a € [0.25,1] and y; ; is the opinion of agent i normalized by the

average of society's opinion, denoted by y; ; = 127 forallie G
ien Vit
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Part 1. Asymptotic Analysis

Lemma 1l

Social Polarization converges in probability to zero if agents reach
Consensus.
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R
Part 1. Asymptotic Analysis

Proposition 1

Information Aggregation implies lack of Social Polarization. The converse
is not necessarily true.
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Part 1. Asymptotic Analysis

Proposition 2

If the Social Network G° = (N, g°) is strongly connected and aperiodic,
then even when the edges are not activated every period and using this
particular rule on Non-Bayesian Learning, Social Polarization still
converges to zero as t — o0.

Summer 2016 (27th GT Conference) Marcos Fernandes and Marina Azzimonti July 21, 2016



Social Polarization: A Network Approach Simulation

Part 2: Simulation-based exercise

@ Limiting properties of Polarization are hard to ascertain analytically,
then Simulation is a good tool for examining the importance of each
characteristic.

@ Simulate a large number of networks with different characteristics
(clock, bayesian, proportion of fanatics, centrality of fanatics, etc...)
and analyze their effects on:

@ Degree of Polarization (Average, Maximum)
@ Speed of Convergence
© Dynamics (Cycles)

@ Regression and Decomposition: Y = g(X3) + ¢

Summer 2016 (27th GT Conference) Marcos Fernandes and Marina Azzimonti July 21, 2016



Simulation
Part 2: Simulation-based exercise

Two particular examples

e/gh

N

Figure: Barabasi-Albert Figure: Erdos-Renyi
n = 40, Power= 1, n=40, p=10%
Out Dist = (0.01,0.04,0.10,0.25,0.60)
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Social Polarization: A Network Approach Simulation

Polarization: Different Levels and Cycles
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Social Polarization: A Network Approach Simulation

Initial Decomposition

Average Polarization

OLS

Proportion of FO 0.6336™""
Average In-Degree FO 0.0011**
Proportion of FO x Average In-Degree FO 0.0016"
Clock 0.0062
Bayes —0.0155""
Homophily —0.0282
Clustering —0.1252"**
Diameter 0.0025"**
Initial Polarization 1.4920***
Initial Polarization (squared) —1.9425™**
Constant —0.1287*"*
Note: *p<0.1; **p<0.05; ***p<0.01
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Next Steps

Run more simulations (tighten standard errors)
Barabasi-Albert (Preferential attachment)

Clock: other stochastic process (more or less persistence)

© 0 ©0 ©

Splitting economies with cycles from those that do not exhibit them
for regressions

Comparative statics (only move one parameter)

©

Key-player analysis: How to reduce Polarization

@ Related paper: Cheap-Talk
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