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Social Polarization: A Network Approach Motivation

Polarization growing in the last 2 decades
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Social Polarization: A Network Approach Motivation

This paper

Objective: understand what are the main drivers of Polarization
dynamics

Key Ingredients:

Individuals are connected through a Network and exchange information

Receive private signals (Bayesian) but also incorporate friends’ opinions
(non-bayesian)

Presence of ”fanatics” prevents Society to learn the truth and might
create cycles of polarization

Innovation: simulate large number of random networks to
decompose the importance of their characteristics in driving
polarization (homophily, density, clustering, etc)
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Social Network

Finite and fixed set of agents N = {1, 2, . . . , n}

Connectivity among these agents at every time t is described by a
directed graph Gt = (N, gt)
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Network Motion

Sequence of time, t = 1, . . . ,T

For all t ≥ 1, we associate a clock to every directed link of the form
(i ,j) in the initial adjacency matrix g0

Ticking: i.i.d. samples from a Bernoulli with fixed and common
parameter p ∈ [0, 1]
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Figure: g0

g0 =


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Social Polarization: A Network Approach Baseline Model

Basic Structure: Network Motion

Draws: n × n matrix ct , with regular elements ctij ∈ {0, 1} and ctii = 1

Graph Law of Motion: gt = g0 ◦ ct
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Priors and Utility Function

Initial prior over a parameter space Θ = [0, 1]: ξi (θ) (world-view)

θi ,t ∼ Be
(
αi ,t , βi ,t

)
Signal profile st =

(
s1,t , s2,t , . . . , sn,t

)
form an i.i.d. random sample

from a Bernoulli distribution with parameter θ∗

Each agent has a real-valued Utility function: U(θ, yi ,t) = −(θ− yi ,t)
2

θ could be interpreted as

1 the optimal size of the government as % of the GDP,

2 the unemployment rate in the next year
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Utility Maximization Problem

For each opinion yi ,t and signal si ,t , agent’s expected utility is:

E[U(θ, yi ,t)] =

∫
Θ
U(θ, yi ,t)ξi ,t(θ|si ,t)dθ

Let y∗i ,t ∈ R be a value such that E[U(θ, yi ,t)] is maximized:

y∗i ,t = arg max
{yi,t}

Eθ|si,t [U(θ, yi ,t)]

= E[θ|si ,t ] =
αi ,t

αi ,t + βi ,t

Therefore, y∗i ,t is the opinion of agent i given his/her world-view and
signals

The distribution of opinions is denoted by the mass function f (y)
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Social Polarization: A Network Approach Baseline Model

Example: Worldviews and Opinions
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Worldviews as Beta Distributions

θ

f
(θ

)

Figure: Agent Blue: α = 3, β = 12 ; Agent Red: α = 7, β = 2
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Timeline of Events

t = 0

Network g0 is randomly formed (explain later)
Nature draw parameters vectors (α0, β0)
Initial Opinions vector y0 is formed

t > 0

Morning: Agents receive signals, Update (Bayesian)
Afternoon: Meet Friends, Update (Non-Bayesian)
Night: Revise opinion

Agents are partially Bayesians: they are influenced by people in their
network (DeGrootian)

Parameter λ measure how Bayesian a Society is
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Social Polarization: A Network Approach Baseline Model

Basic Structure: Belief Update

Departure from:

Epstein, Noor and Sandroni (2010)
Jadbabaie, Molavi, Sandroni and Tahbaz-Salehi (2012)

Update Rule

αt+1 =
[
λI + (I− λ)g̃ t+1

](
αt + st+1

)
βt+1 =

[
λI + (I− λ)g̃ t+1

]
(βt + 1− st+1)

Special cases:

Bayes: λ = 1
DeGroot: λ = 0
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Social Polarization: A Network Approach Definitions

Definition 1 (Fanatic Agents)

Fanatic Agents are characterized by disregarding information both from
private signals and friends

Parameters:

Type 0: α = 0 and β = βmax

Type 1: β = 0 and α = αmax
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Social Polarization: A Network Approach Definitions

Definition 2 (Opinion Consensus)

A group C ⊆ N = {1, 2, . . . , n} reaches a consensus for any initial
distribution of parameters (α0, β0) if

| plim
t→∞

yi ,t − plim
t→∞

yj ,t | < ε
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Social Polarization: A Network Approach Definitions

Definition 3 (Information Aggregation)

Information Aggregation is a measure of how close agents’ opinions are to
the true state of nature θ∗.

We say that society aggregates information if

max
i
| plim
t→∞

yi ,t − θ∗| < ε
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Social Polarization: A Network Approach Definitions

Following: Esteban and Ray (1994, 2004)

Definition 4 (Social Polarization)

Social Polarization P is a measure that aggregates both Identification
and Alienation across citizens:

Pa
t (f ) =

1

2

∑
i

∑
j 6=i

f (yi ,t)
1+a f (yj ,t) |ỹi ,t − ỹj ,t |

where a ∈ [0.25, 1] and ỹi ,t is the opinion of agent i normalized by the
average of society’s opinion, denoted by ỹi ,t =

yi,t
1
n

∑
i∈N yi,t

, for all i ∈ G
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Social Polarization: A Network Approach Definitions

Part 1: Asymptotic Analysis

Lemma 1

Social Polarization converges in probability to zero if agents reach
Consensus.

Summer 2016 (27th GT Conference) Marcos Fernandes and Marina Azzimonti July 21, 2016



Social Polarization: A Network Approach Definitions

Part 1: Asymptotic Analysis

Proposition 1

Information Aggregation implies lack of Social Polarization. The converse
is not necessarily true.
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Social Polarization: A Network Approach Definitions

Part 1: Asymptotic Analysis

Proposition 2

If the Social Network G 0 = (N, g0) is strongly connected and aperiodic,
then even when the edges are not activated every period and using this
particular rule on Non-Bayesian Learning, Social Polarization still
converges to zero as t →∞.
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Social Polarization: A Network Approach Simulation

Part 2: Simulation-based exercise

Limiting properties of Polarization are hard to ascertain analytically,
then Simulation is a good tool for examining the importance of each
characteristic.

Simulate a large number of networks with different characteristics
(clock, bayesian, proportion of fanatics, centrality of fanatics, etc...)
and analyze their effects on:

1 Degree of Polarization (Average, Maximum)

2 Speed of Convergence

3 Dynamics (Cycles)

Regression and Decomposition: Y = g(Xβ) + ε
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Social Polarization: A Network Approach Simulation

Part 2: Simulation-based exercise
Two particular examples
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Figure: Barabasi-Albert
n = 40, Power= 1,
Out Dist = (0.01, 0.04, 0.10, 0.25, 0.60)
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Figure: Erdos-Renyi
n = 40, p = 10%
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Social Polarization: A Network Approach Simulation

Polarization: Different Levels and Cycles
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Social Polarization: A Network Approach Simulation

Initial Decomposition

Average Polarization
OLS

Proportion of F0 0.6336∗∗∗

Average In-Degree F0 0.0011∗∗

Proportion of F0 x Average In-Degree F0 0.0016∗

Clock 0.0062
Bayes −0.0155∗∗

Homophily −0.0282
Clustering −0.1252∗∗∗

Diameter 0.0025∗∗∗

Initial Polarization 1.4920∗∗∗

Initial Polarization (squared) −1.9425∗∗∗

Constant −0.1287∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Social Polarization: A Network Approach Next Steps

Next Steps

1 Run more simulations (tighten standard errors)

2 Barabasi-Albert (Preferential attachment)

3 Clock: other stochastic process (more or less persistence)

4 Splitting economies with cycles from those that do not exhibit them
for regressions

5 Comparative statics (only move one parameter)

6 Key-player analysis: How to reduce Polarization

7 Related paper: Cheap-Talk
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